

UNIVERSITÀ DEGLI STUDI DI GENOVA DIPARTIMENTO DI CHIMICA E CHIMICA INDUSTRIALE Via Dodecaneso, 31 – 16146 GENOVA Tel. +39 0103536113 – Fax +39 0103538733

RESEARCH THEMES DOCTORATE SCIENCES AND TECHNOLOGIES OF CHEMISTRY AND MATERIALS

<u>NOTE</u>: In this file you can find additional information on some research themes summarized in the call November, 2024.

Summary

Curriculum Nanosciences	1
Curriculum Chemical Sciences and Technologies	5

Curriculum Nanosciences

1. Development of light-sources based on colloidal quantum dots

<u>Supervisor(s)</u>: Francesco di Stasio, Paola Lova

Short title	Quantum dot LEDs
Expanded Title	Light-emitting diodes based on colloidal quantum dots
Description	The Photonic Nanomaterials group aims at developing light- emitting diodes operating in the visible and short-wave infrared spectral ranges exploiting the unique properties of colloidal quantum dots (QDs). QD chemistry enables on-demand tailoring of the light-emission properties of the final nanomaterial in combination with solution processing enabling the low-cost fabrication of light-emitting diodes (LEDs).Currently, the group is focusing on the development of two main types of LEDs based on QDs (either small or large-footprint ones): short-wave infrared ones (940 – 1600 nm) based on InAs or Hg-based QDs and blue LEDs (400-450 nm) exploiting CdSe, perovskites or Ga-based QDs. The PhD candidate will focus on the synthesis of QDs and their implementation of LEDs carefully design to obtain high external quantum efficiency and brightness. In addition, the PhD candidate will carry out detailed optical characterization of the synthesized

	QDs (steady-state and time-resolved photoluminescence, photon statistics, etc) top correlate chemical properties with the light- emission properties. Importantly, the PhD candidate will engage in collaborations with other group members, given the interdisciplinary nature of the proposed research theme, which requires a variety of skills for implementation
References	Advanced Science, 2312482 (2024), Advanced Optical Materials, 2400554 (2024), ACS Photonics, 10, 1662–1670 (2023), ACS Energy Letters, 7, 3788-3790 (2022)
Main Supervisor	Dr. Francesco Di Stasio, Photonic Nanomaterials (<u>https://photnano.iit.it/</u>) – Istituto Italiano di Tecnologia, Francesco.DiStasio@iit.it
Additional Supervisor	Dr. Paola Lova, Dipartimento di Chimica e Chimica Industriale (https://chimica.unige.it/) – Università degli studi di Genova, paola.lova@unige.it
Essential expertise	
i)	Master degree in Materials Science, Chemistry, Physics or related disciplines
ii)	Highly motivated
iii)	Willing to undertake a challenging research project
iv)	Interest in working in an interdisciplinary teamskills required for the project development.
Desirable expertise	
i)	Colloidal synthesis of quantum dots (II-VI, III-V, perovskites)
ii)	Functionalization of quantum dots (ligand exchange procedures both in solution and solids)
iii)	Fabrication and electro-optical characterization of light-emitting diodes
iv)	Characterization of quantum dots (comprehensive investigation of their structural, optical and morphological properties)

2. Rapid fabrication of graded layered nanomaterials (funded by 2023 ERC Consolidator Grant EVA, programme Horizon Europe, GA 101124411)

<u>Supervisor(s)</u>: Milena Arcignegas

Short title	Rapid fabrication of graded layered nanomaterials
Expanded Title	Design and synthesis of intrinsically functional graded layered
	nanomaterials through rapid liquid deposition
Background	Advanced functional devices require the integration of distinct
	materials (polymers, ceramics, metals) with different properties to
	achieve high performance in aerospace, biomedicine, electronics,
	and automotive. A major structural challenge is associated with
	localized (mechanical, thermal, electrical) stresses due to property
	mismatch at different scales, thus causing premature malfunction
	and failure. Research has focussed on compositional or structural
	material gradients (in at least one spatial direction) to enable the

Initiation of informe body parts (instry infostry infositry infostry in		fabrication of "in-one" body parts (mostly inorganics) with
AlGaAs with graded bandgap for solar cells, or Al2O3/Ti with graded mechanical stiffness for bioimplants. However, in light of miniaturization technology, there is a need to translate this concept to nanomaterials. The Automated Nanomaterials Engineering group at IIT aims to explore rapid fabrication strategies for constructing 2D layered nanomaterials with graded properties, aiming to revolutionize the landscape of advanced materials engineeringDescriptionIn this PhD project, we will exploit different rapid fabrication routes based on controlled liquid deposition to deliver functional graded layered nanomaterials. This will include direct laser writing and drop-on-demand injection to intercalate consecutive organic and inorganic layers, as a means to create mechanical and optical gradents in the final layered films. These nanostructures will be subjected then to a complete (structural, chemical, surface, mechanical, and optical) characterization, including the assessment of their stability against moisture and temperature. The layered nanomaterials will be engineered to optimize their graded mechanical and optical properties.Main SupervisorDr. Millena Arciniegas, Millena.Arcinegas@iit.itEssential expertiseIi)Excellent Master Degree in Materials Science, Chemical Engineering, Chemistry, Physics, or similarii)Highly motivatediii)Creativeiv)Excited to work in an interdisciplinary teamDesirable expertiseIii)Experience in direct laser writing and controlled liquid depositioniii)Experience in direct laser writing and controlled liquid depositioniii)Experience in direct laser writing and controlled liquid depositioniii) </td <td></td> <td></td>		
graded mechanical stiffness for bioimplants. However, in light of miniaturization technology, there is a need to translate this concept to nanomaterials. The Automated Nanomaterials Engineering group at IIT aims to explore rapid fabrication strategies for constructing 2D layered nanomaterials with graded properties, aiming to revolutionize the landscape of advanced materials engineeringDescriptionIn this PhD project, we will exploit different rapid fabrication routes based on controlled liquid deposition to deliver functional graded layered nanomaterials. This will include direct laser writing and drop-on-demand injection to intercalate consecutive organic and inorganic layers, as a means to create mechanical and optical gradients in the final layered films. These nanostructures will be subjected then to a complete (structural, chemical, surface, mechanical, and optical) characterization, including the assessment of their stability against moisture and temperature. The layered nanomaterials will be engineered to optimize their graded mechanical and optical properties.Main SupervisorDr. Milena Arciniegas, Milena.Arciniegas@iit.itEssential expertiseiii)ii)Excellent Master Degree in Materials Science, Chemical Engineering, Chemistry, Physics, or similariii)Creativeiv)Excited to work in an interdisciplinary teamDesirable expertiseiiii)ii)Experience in direct laser writing and controlled liquid depositioniii)Experience in direct laser writing and controlled liquid depositioniii)Experience in structural and optical characterizationiiii)Knowledge in materials wet-chemical synthesis		
miniaturization technology, there is a need to translate this concept to nanomaterials. The Automated Nanomaterials Engineering group at IIT aims to explore rapid fabrication strategies for constructing 2D layered nanomaterials with graded properties, aiming to revolutionize the landscape of advanced materials engineeringDescriptionIn this PhD project, we will exploit different rapid fabrication routes based on controlled liquid deposition to deliver functional graded layered nanomaterials. This will include direct laser writing and drop-on-demand injection to intercalate consecutive organic and inorganic layers, as a means to create mechanical and optical gradients in the final layered films. These nanostructures will be subjected then to a complete (structural, chemical, surface, mechanical, and optical) characterization, including the assessment of their stability against moisture and temperature. The layered nanomaterials will be engineered to optimize their graded mechanical and optical properties.Main SupervisorDr. Milena Arciniegas, Milena.Arciniegas@iit.itEssential expertiseExcellent Master Degree in Materials Science, Chemical Engineering, Chemistry, Physics, or similarii)Highly motivatediii)Excited to work in an interdisciplinary teamDesirable expertiseImage: Sperience in direct laser writing and controlled liquid depositioniii)Experience in direct lase		
concept to nanomaterials. The Automated Nanomaterials Engineering group at IIT aims to explore rapid fabrication strategies for constructing 2D layered nanomaterials with graded properties, aiming to revolutionize the landscape of advanced materials engineeringDescriptionIn this PhD project, we will exploit different rapid fabrication routes based on controlled liquid deposition to deliver functional graded layered nanomaterials. This will include direct laser writing and drop-on-demand injection to intercalate consecutive organic and inorganic layers, as a means to create mechanical and optical gradients in the final layered films. These nanostructures will be subjected then to a complete (structural, chemical, surface, mechanical, and optical) characterization, including the assessment of their stability against moisture and temperature. The layered nanomaterials will be engineered to optimize their graded mechanical and optical properties.Main SupervisorDr. Milena Arciniegas, Milena.Arciniegas@iit.itEssential expertisei)Excellent Master Degree in Materials Science, Chemical Engineering, Chemistry, Physics, or similarii)Highly motivatediii)Excited to work in an interdisciplinary teamDesirable expertiseii)Experience in direct laser writing and controlled liquid depositioniii)Experience in direct laser writing and controlled liquid		
Engineering group at IIT aims to explore rapid fabrication strategies for constructing 2D layered nanomaterials with graded properties, aiming to revolutionize the landscape of advanced materials engineeringDescriptionIn this PhD project, we will exploit different rapid fabrication routes based on controlled liquid deposition to deliver functional graded layered nanomaterials. This will include direct laser writing and drop-on-demand injection to intercalate consecutive organic and inorganic layers, as a means to create mechanical and optical gradients in the final layered films. These nanostructures will be subjected then to a complete (structural, chemical, surface, mechanical, and optical) chracterization, including the assessment of their stability against moisture and temperature. The layered nanomaterials will be engineered to optimize their graded mechanical and optical properties.Main SupervisorDr. Milena Arciniegas, Milena.Arciniegas@iit.itEssential expertisei)Excellent Master Degree in Materials Science, Chemical Engineering, Chemistry, Physics, or similarii)Highly motivatediii)Excited to work in an interdisciplinary teamDesirable expertiseiiiiii)Experience in direct laser writing and controlled liquid depositioniii)Experience in structural and optical characterizationiii)Experience in structural and optical characterizationiii)Experience in structural and optical characterizationiii)Experience in direct laser writing and controlled liquid depositioniii)Experience in structural and optical characterizationiii)Experience in structural and optical characterization<		
for constructing 2D layered nanomaterials with graded properties, aiming to revolutionize the landscape of advanced materials engineeringDescriptionIn this PhD project, we will exploit different rapid fabrication routes based on controlled liquid deposition to deliver functional graded layered nanomaterials. This will include direct laser writing and drop-on-demand injection to intercalate consecutive organic and inorganic layers, as a means to create mechanical and optical gradients in the final layered films. These nanostructures will be subjected then to a complete (structural, chemical, surface, mechanical, and optical) characterization, including the assessment of their stability against moisture and temperature. The layered nanomaterials will be engineered to optimize their graded mechanical and optical properties.Main SupervisorDr. Milena Arciniegas, Milena.Arciniegas@iit.itEssential expertiseiii)Excellent Master Degree in Materials Science, Chemical Engineering, Chemistry, Physics, or similariii)Creativeiv)Excited to work in an interdisciplinary teamDesirable expertiseiii)Experience in direct laser writing and controlled liquid depositioniii)Experience in direct laser writing and controlled liquid depositioniii)Experience in structural and optical characterization		
aiming to revolutionize the landscape of advanced materials engineeringDescriptionIn this PhD project, we will exploit different rapid fabrication routes based on controlled liquid deposition to deliver functional graded layered nanomaterials. This will include direct laser writing and drop-on-demand injection to intercalate consecutive organic and inorganic layers, as a means to create mechanical and optical gradients in the final layered films. These nanostructures will be subjected then to a complete (structural, chemical, surface, mechanical, and optical) characterization, including the assessment of their stability against moisture and temperature. The layered nanomaterials will be engineered to optimize their graded mechanical and optical properties.Main SupervisorDr. Milena Arciniegas, Milena.Arciniegas@iit.itEssential expertisei)i)Excellent Master Degree in Materials Science, Chemical Engineering, Chemistry, Physics, or similarii)Creativeiv)Excited to work in an interdisciplinary teamDesirable expertisei)i)Experience in direct laser writing and controlled liquid depositionii)Experience in structural and optical characterizationiii)Experience in structural and optical synthesis		
engineeringDescriptionIn this PhD project, we will exploit different rapid fabrication routes based on controlled liquid deposition to deliver functional graded layered nanomaterials. This will include direct laser writing and drop-on-demand injection to intercalate consecutive organic and inorganic layers, as a means to create mechanical and optical gradients in the final layered films. These nanostructures will be subjected then to a complete (structural, chemical, surface, mechanical, and optical) characterization, including the assessment of their stability against moisture and temperature. The layered nanomaterials will be engineered to optimize their graded mechanical and optical properties.Main SupervisorDr. Milena Arciniegas, Milena.Arciniegas@iit.itEssential expertiseii)ii)Excellent Master Degree in Materials Science, Chemical Engineering, Chemistry, Physics, or similariii)Creativeiv)Excited to work in an interdisciplinary teamDesirable expertiseii)ii)Experience in direct laser writing and controlled liquid depositioniii)Experience in structural and optical characterizationiii)Knowledge in materials wet-chemical synthesis		
DescriptionIn this PhD project, we will exploit different rapid fabrication routes based on controlled liquid deposition to deliver functional graded layered nanomaterials. This will include direct laser writing and drop-on-demand injection to intercalate consecutive organic and inorganic layers, as a means to create mechanical and optical gradients in the final layered films. These nanostructures will be subjected then to a complete (structural, chemical, surface, mechanical, and optical) characterization, including the assessment of their stability against moisture and temperature. The layered nanomaterials will be engineered to optimize their graded mechanical and optical properties.Main SupervisorDr. Milena Arciniegas, Milena.Arciniegas@iit.itEssential expertiseIi)Excellent Master Degree in Materials Science, Chemical Engineering, Chemistry, Physics, or similarii)Highly motivatediii)Creativeiv)Excited to work in an interdisciplinary teamDesirable expertiseExperience in direct laser writing and controlled liquid depositionii)Experience in structural and optical characterizationiii)Knowledge in materials wet-chemical synthesis		
routes based on controlled liquid deposition to deliver functional graded layered nanomaterials. This will include direct laser writing and drop-on-demand injection to intercalate consecutive organic and inorganic layers, as a means to create mechanical and optical gradients in the final layered films. These nanostructures will be subjected then to a complete (structural, chemical, surface, mechanical, and optical) characterization, including the assessment of their stability against moisture and temperature. The layered nanomaterials will be engineered to optimize their graded mechanical and optical properties.Main SupervisorDr. Milena Arciniegas, Milena.Arciniegas@iit.itEssential expertisei)Excellent Master Degree in Materials Science, Chemical Engineering, Chemistry, Physics, or similarii)Highly motivatediii)Creativeiv)Excited to work in an interdisciplinary teamDesirable expertiseExperience in direct laser writing and controlled liquid depositionii)Experience in direct laser writing and controlled synthesis		
graded layered nanomaterials. This will include direct laser writing and drop-on-demand injection to intercalate consecutive organic and inorganic layers, as a means to create mechanical and optical gradients in the final layered films. These nanostructures will be subjected then to a complete (structural, chemical, surface, mechanical, and optical) characterization, including the assessment of their stability against moisture and temperature. The layered nanomaterials will be engineered to optimize their graded mechanical and optical properties.Main SupervisorDr. Milena Arciniegas, Milena.Arciniegas@iit.itEssential expertisei)Excellent Master Degree in Materials Science, Chemical Engineering, Chemistry, Physics, or similarii)Highly motivatediii)Creativeiv)Excited to work in an interdisciplinary teamDesirable expertisei)Experience in direct laser writing and controlled liquid depositioniii)Knowledge in materials wet-chemical synthesis	Description	
and drop-on-demand injection to intercalate consecutive organic and inorganic layers, as a means to create mechanical and optical gradients in the final layered films. These nanostructures will be subjected then to a complete (structural, chemical, surface, mechanical, and optical) characterization, including the assessment of their stability against moisture and temperature. The layered nanomaterials will be engineered to optimize their graded mechanical and optical properties.Main SupervisorDr. Milena Arciniegas, Milena.Arciniegas@iit.itEssential expertiseExcellent Master Degree in Materials Science, Chemical Engineering, Chemistry, Physics, or similarii)Highly motivatediii)Creativeiv)Excited to work in an interdisciplinary teamDesirable expertiseExperience in direct laser writing and controlled liquid depositionii)Experience in structural and optical characterizationiii)Knowledge in materials wet-chemical synthesis		
and inorganic layers, as a means to create mechanical and optical gradients in the final layered films. These nanostructures will be subjected then to a complete (structural, chemical, surface, mechanical, and optical) characterization, including the assessment of their stability against moisture and temperature. The layered nanomaterials will be engineered to optimize their graded mechanical and optical properties.Main SupervisorDr. Milena Arciniegas, Milena.Arciniegas@iit.itEssential expertisei)Excellent Master Degree in Materials Science, Chemical Engineering, Chemistry, Physics, or similariii)Highly motivatediii)Excited to work in an interdisciplinary teamDesirable expertisei)Experience in direct laser writing and controlled liquid depositioniii)Experience in structural and optical characterizationiii)Knowledge in materials wet-chemical synthesis		
gradients in the final layered films. These nanostructures will be subjected then to a complete (structural, chemical, surface, mechanical, and optical) characterization, including the assessment of their stability against moisture and temperature. The layered nanomaterials will be engineered to optimize their graded mechanical and optical properties.Main SupervisorDr. Milena Arciniegas, Milena.Arciniegas@iit.itEssential expertiseImage: Science, Chemical Engineering, Chemistry, Physics, or similarii)Excellent Master Degree in Materials Science, Chemical Engineering, Chemistry, Physics, or similariii)Highly motivatediii)Excited to work in an interdisciplinary teamDesirable expertiseExperience in direct laser writing and controlled liquid depositionii)Experience in structural and optical characterizationiii)Knowledge in materials wet-chemical synthesis		· · · · ·
subjected then to a complete (structural, chemical, surface, mechanical, and optical) characterization, including the assessment of their stability against moisture and temperature. The layered nanomaterials will be engineered to optimize their graded mechanical and optical properties.Main SupervisorDr. Milena Arciniegas, Milena.Arciniegas@iit.itEssential expertisei)i)Excellent Master Degree in Materials Science, Chemical Engineering, Chemistry, Physics, or similarii)Highly motivatediii)Creativeiv)Excited to work in an interdisciplinary teamDesirable expertiseExperience in direct laser writing and controlled liquid depositionii)Experience in structural and optical characterizationiii)Knowledge in materials wet-chemical synthesis		and inorganic layers, as a means to create mechanical and optical
mechanical, and optical) characterization, including the assessment of their stability against moisture and temperature. The layered nanomaterials will be engineered to optimize their graded mechanical and optical properties.Main SupervisorDr. Milena Arciniegas, Milena.Arciniegas@iit.itEssential expertiseImage: Stepsing and		gradients in the final layered films. These nanostructures will be
assessment of their stability against moisture and temperature. The layered nanomaterials will be engineered to optimize their graded mechanical and optical properties.Main SupervisorDr. Milena Arciniegas, Milena.Arciniegas@iit.itEssential expertiseExcellent Master Degree in Materials Science, Chemical Engineering, Chemistry, Physics, or similarii)Highly motivatediii)Creativeiv)Excited to work in an interdisciplinary teamDesirable expertiseExperience in direct laser writing and controlled liquid depositionii)Experience in structural and optical characterizationiii)Knowledge in materials wet-chemical synthesis		subjected then to a complete (structural, chemical, surface,
The layered nanomaterials will be engineered to optimize their graded mechanical and optical properties.Main SupervisorDr. Milena Arciniegas, Milena.Arciniegas@iit.itEssential expertiseExcellent Master Degree in Materials Science, Chemical Engineering, Chemistry, Physics, or similarii)Highly motivatediii)Kreativeiv)Excited to work in an interdisciplinary teamDesirable expertiseExperience in direct laser writing and controlled liquid depositionii)Experience in structural and optical characterizationiii)Knowledge in materials wet-chemical synthesis		mechanical, and optical) characterization, including the
graded mechanical and optical properties.Main SupervisorDr. Milena Arciniegas, Milena.Arciniegas@iit.itEssential expertisei)Excellent Master Degree in Materials Science, Chemical Engineering, Chemistry, Physics, or similarii)Highly motivatediii)Creativeiv)Excited to work in an interdisciplinary teamDesirable expertiseExperience in direct laser writing and controlled liquid depositionii)Experience in structural and optical characterizationiii)Knowledge in materials wet-chemical synthesis		assessment of their stability against moisture and temperature.
Main SupervisorDr. Milena Arciniegas, Milena.Arciniegas@iit.itEssential expertisei)Excellent Master Degree in Materials Science, Chemical Engineering, Chemistry, Physics, or similarii)Highly motivatediii)Creativeiv)Excited to work in an interdisciplinary teamDesirable expertiseExperience in direct laser writing and controlled liquid depositionii)Experience in structural and optical characterizationiii)Knowledge in materials wet-chemical synthesis		The layered nanomaterials will be engineered to optimize their
Essential expertise i) Excellent Master Degree in Materials Science, Chemical Engineering, Chemistry, Physics, or similar ii) Highly motivated iii) Creative iv) Excited to work in an interdisciplinary team Desirable expertise Experience in direct laser writing and controlled liquid deposition ii) Experience in structural and optical characterization iii) Knowledge in materials wet-chemical synthesis		graded mechanical and optical properties.
i)Excellent Master Degree in Materials Science, Chemical Engineering, Chemistry, Physics, or similarii)Highly motivatediii)Creativeiv)Excited to work in an interdisciplinary teamDesirable expertiseExperience in direct laser writing and controlled liquid depositionii)Experience in structural and optical characterizationiii)Knowledge in materials wet-chemical synthesis	Main Supervisor	Dr. Milena Arciniegas, Milena.Arciniegas@iit.it
Engineering, Chemistry, Physics, or similarii)Highly motivatediii)Creativeiv)Excited to work in an interdisciplinary teamDesirable expertiseExperience in direct laser writing and controlled liquid depositionii)Experience in structural and optical characterizationiii)Knowledge in materials wet-chemical synthesis	Essential expertise	
ii)Highly motivatediii)Creativeiv)Excited to work in an interdisciplinary teamDesirable expertiseExperience in direct laser writing and controlled liquid depositionii)Experience in structural and optical characterizationiii)Knowledge in materials wet-chemical synthesis	i)	Excellent Master Degree in Materials Science, Chemical
iii)Creativeiv)Excited to work in an interdisciplinary teamDesirable expertiseExperience in direct laser writing and controlled liquid depositionii)Experience in structural and optical characterizationiii)Knowledge in materials wet-chemical synthesis		Engineering, Chemistry, Physics, or similar
iv)Excited to work in an interdisciplinary teamDesirable expertisei)Experience in direct laser writing and controlled liquid depositionii)Experience in structural and optical characterizationiii)Knowledge in materials wet-chemical synthesis	ii)	Highly motivated
Desirable expertise i) Experience in direct laser writing and controlled liquid deposition ii) Experience in structural and optical characterization iii) Knowledge in materials wet-chemical synthesis	iii)	Creative
i)Experience in direct laser writing and controlled liquid depositionii)Experience in structural and optical characterizationiii)Knowledge in materials wet-chemical synthesis	iv)	Excited to work in an interdisciplinary team
ii)Experience in structural and optical characterizationiii)Knowledge in materials wet-chemical synthesis	Desirable expertise	
iii) Knowledge in materials wet-chemical synthesis	i)	Experience in direct laser writing and controlled liquid deposition
		Experience in structural and optical characterization
iv) Knowledge in automated synthesis methods	iii)	Knowledge in materials wet-chemical synthesis
	iv)	Knowledge in automated synthesis methods

3. Automated functional nanomaterials discovery (funded by 2023 ERC Consolidator Grant EVA, programme Horizon Europe, GA 101124411)

Short title	Automated functional nanomaterials discovery
Expanded Title	Data-Driven Innovation in Broadband Emitting Layered
	Perovskites
Background	The self-intercalation of organic and inorganic components in two-
	dimensional layered perovskites brings up new avenues for the
	structural engineering of efficient white light emitters from a single
	material. While prior investigations mainly use random selection
	of the building blocks, our Automated Nanomaterials Engineering

<u>Supervisor(s)</u>: Milena Arcignegas

	Unit aims to explore an experimental approach based on the integration of synthesis parameters, molecular descriptors, and
	automated workflows, to identify and define optimal conditions
	and tools to accelerate the discovery of high-performance
	nanomaterials.
Description	In this PhD project, you will develop automated protocols for an
	automated robot-based workflow and create data routines. The
	project covers the complete process from the initial experimental
	conditions, the development and implementation of an
	autonomous evaluation of the data, to the preparation of new
	layered structures. You will have the opportunity to implement
	scripts and software tools to streamline data handling and ensure
	accuracy and consistency. The materials prepared through the
	automated workflow will be structurally and optically
	characterized in a closed loop. Your work will play a crucial role in
	advancing the field of automated synthesis, driving innovation, and
	improving efficiency in nanomaterial research.
Main Supervisor	Dr. Milena Arciniegas, Milena. Arciniegas@iit.it
Essential expertise	
i)	Excellent Master Degree in Chemistry, Chemical Engineering, ,
	Computational Chemistry or related fields
ii)	Highly motivated
iii)	Creative
iv)	Excited to work in an interdisciplinary team
Desirable expertise	
i)	Knowledge on programming languages such as Python or
	MATLAB
ii)	Experience in automated synthesis
iii)	Knowledge in materials wet-chemical synthesis
	Experience with data analysis and machine learning technique

4. Photonics and optoelectronics of novel low-dimensional nanomaterials

<u>Supervisor(s)</u>: Roman Krahne

Short title	Photonics and optoelectronics of novel low-dimensional nanomaterials
Expanded Title	Light-matter interaction and photonics in emerging solution- processed nanomaterials with complex and anisotropic architectures
Description	We are investigating emerging nanomaterials for light emission, integration with optical resonators, and optoelectronic applications with novel functionalities. We focus on emerging low- dimensional hybrid organic/inorganic nanomaterials in which the composition can be designed to obtain the desired properties. We are also interested in combinations with plasmonic nanosystems that can be realized either by self-assembly or top-down

	fabrication. This PhD project will target the synthesis of the novel nanomaterials and exploration of different strategies towards devices in light emission, energy conversion and photodetection.
Main Supervisor	Dr. Roman Krahne, roman.krahne@iit.it
Essential expertise	
i)	Master Degree in Physics, Chemistry, Mechanical Engineering, Nanotechnology, Material Science, or similar
ii)	Profound knowledge in solid-state physics and semiconductor devices
iii)	Knowledge in chemical synthesis and optical characterization tools
iv)	Enthusiastic to work in a creative and international environment
Desirable expertise	
i)	Experience in nanomaterial fabrication
ii)	Experience in optical spectroscopy
iii)	Experience in nanofabrication (clean room)
iv)	Experience in electrical characterization

Curriculum Chemical Sciences and Technologies

5. Synthesis of levoglucosenone derivatives using sustainable synthetic technologies (funded by 2023 ERC Starting Grant CIRCULARIZE, programme Horizon-ERC, GA 101114664)

Supervisor(s): Alessandro Pellis

As part of the CIRCULARIZE project funded by the European Research Council (ERC) of the European Union under the Starting Grant program (ERC-2023-STG), this PhD position is announced on the topic: synthesis of levoglucosenone derivatives using sustainable synthetic technologies.

The project aims to carry out chemo-enzymatic modifications on levoglucosenone to prepare compounds of potential industrial interest and/or as building blocks for the synthesis of smart polymeric materials. The synthetic processes will involve the use of microwaves, cellulose-derived organic solvents and immobilized biocatalysts while reaction products will be analyzed using techniques such as LC-MS, GC-MS, GPC, and NMR.

For further details concerning the research theme, please contact: <u>alessandro.pellis@unige.it</u>.